4,701 research outputs found

    Relative entropy as a measure of inhomogeneity in general relativity

    Full text link
    We introduce the notion of relative volume entropy for two spacetimes with preferred compact spacelike foliations. This is accomplished by applying the notion of Kullback-Leibler divergence to the volume elements induced on spacelike slices. The resulting quantity gives a lower bound on the number of bits which are necessary to describe one metric given the other. For illustration, we study some examples, in particular gravitational waves, and conclude that the relative volume entropy is a suitable device for quantitative comparison of the inhomogeneity of two spacetimes.Comment: 15 pages, 7 figure

    Nonlocal magnon-polaron transport in yttrium iron garnet

    Get PDF
    The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic contact (detector) on the magnetic film, spatially separated from the first contact that is used to apply the temperature bias (injector). Magnon-polarons are hybridized lattice and spin waves in magnetic materials, generated by the magnetoelastic interaction. Kikkawa et al. [Phys. Rev. Lett. \textbf{117}, 207203 (2016)] interpreted a resonant enhancement of the local SSE in yttrium iron garnet (YIG) as a function of the magnetic field in terms of magnon-polaron formation. Here we report the observation of magnon-polarons in \emph{nonlocal} magnon spin injection/detection devices for various injector-detector spacings and sample temperatures. Unexpectedly, we find that the magnon-polaron resonances can suppress rather than enhance the nonlocal SSE. Using finite element modelling we explain our observations as a competition between the SSE and spin diffusion in YIG. These results give unprecedented insights into the magnon-phonon interaction in a key magnetic material.Comment: 5 pages, 6 figure

    Differential gaze behavior towards sexually preferred and non-preferred human figures

    Get PDF
    The gaze pattern associated with image exploration is a sensitive index of our attention, motivation and preference. To examine whether an individual’s gaze behavior can reflect his/her sexual interest, we compared gaze patterns of young heterosexual men and women (M = 19.94 years, SD = 1.05) while viewing photos of plain-clothed male and female figures aged from birth to sixty years old. Our analysis revealed a clear gender difference in viewing sexually preferred figure images. Men displayed a distinctive gaze pattern only when viewing twenty-year-old female images, with more fixations and longer viewing time dedicated to the upper body and waist-hip region. Women also directed more attention at the upper body on female images in comparison to male images, but this difference was not age-specific. Analysis of local image salience revealed that observers’ eye-scanning strategies could not be accounted for by low-level processes, such as analyzing local image contrast and structure, but were associated with attractiveness judgments. The results suggest that the difference in cognitive processing of sexually preferred and non-preferred figures can be manifested in gaze patterns associated with figure viewing. Thus, eye-tracking holds promise as a potential sensitive measure for sexual preference, particularly in men

    Monitoring alkylphenols in water using the polar organic chemical integrative sampler (POCIS): determining sampling rates via the extraction of PES membranes and Oasis beads

    Get PDF
    Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a “pharmaceutical” POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log Kow between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (Rs) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log Kow < 4 were preferentially accumulated in Oasis beads, and compounds with log Kow > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log Kow ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log Kow ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log Kow ≥ 4), as well as hydrophilic APs, most effectively. © 2017 Elsevier Lt

    The use of the saccade target as a visual reference when localizing flashes during saccades

    Get PDF
    Contains fulltext : 139147.pdf (publisher's version ) (Open Access)Flashes presented around the time of a saccade are often mislocalized. Such mislocalization is influenced by various factors. Here, we evaluate the role of the saccade target as a landmark when localizing flashes. The experiment was performed in a normally illuminated room to provide ample other visual references. Subjects were instructed to follow a randomly jumping target with their eyes. We flashed a black dot on the screen around the time of saccade onset. The subjects were asked to localize the black dot by touching the appropriate location on the screen. In a first experiment, the saccade target was displaced during the saccade. In a second experiment, it disappeared at different moments. Both manipulations affected the mislocalization. We conclude that our subjects' judgments are partly based on the flashed dot's position relative to the saccade target

    Concepts, Design and Implementation of the ATLAS New Tracking (NEWT)

    Get PDF
    The track reconstruction of modern high energy physics experiments is a very complex task that puts stringent requirements onto the software realisation. The ATLAS track reconstruction software has been in the past dominated by a collection of individual packages, each of which incorporating a different intrinsic event data model, different data flow sequences and calibration data. Invoked by the Final Report of the Reconstruction Task Force, the ATLAS track reconstruction has undergone a major design revolution to ensure maintainability during the long lifetime of the ATLAS experiment and the flexibility needed for the startup phase. The entire software chain has been re-organised in modular components and a common Event Data Model has been deployed during the last three years. A complete new track reconstruction that concentrates on common tools aimed to be used by both ATLAS tracking devices, the Inner Detector and the Muon System, has been established. It has been already used during many large scale tests with data from Monte Carlo simulation and from detector commissioning projects such as the combined test beam 2004 and cosmic ray events. This document concentrates on the technical and conceptual details of the newly developed track reconstruction, also known as New Tracking

    MEMS practice, from the lab to the telescope

    Full text link
    Micro-electro-mechanical systems (MEMS) technology can provide for deformable mirrors (DMs) with excellent performance within a favorable economy of scale. Large MEMS-based astronomical adaptive optics (AO) systems such as the Gemini Planet Imager are coming on-line soon. As MEMS DM end-users, we discuss our decade of practice with the micromirrors, from inspecting and characterizing devices to evaluating their performance in the lab. We also show MEMS wavefront correction on-sky with the "Villages" AO system on a 1-m telescope, including open-loop control and visible-light imaging. Our work demonstrates the maturity of MEMS technology for astronomical adaptive optics.Comment: 14 pages, 15 figures, Invited Paper, SPIE Photonics West 201

    Chromatic induction and the layout of colours within a complex scene

    Get PDF
    AbstractA target’s apparent colour is influenced by the colours in its surrounding. If the surrounding consists of a single coloured surface, the influence is a shift ‘away’ from the surface’s colour. If the surface is more than 1° from the target area the shift is very small. If there are many surfaces, then not only the average luminance and chromaticity of the surfaces matters, but also the chromatic variability. It is not yet clear whether it makes any difference where the chromatic variability is within the scene, so we constructed stimuli in which the chromatic variability was restricted to certain regions. We found that it made very little difference where the chromatic variability was located. The extent to which the average colour of nearby surfaces influences the apparent colour of the target seems to depend on the average chromatic variability of the whole scene
    corecore